§ 1.2. Получение нанодисперсных порошков газофазным методом
Создание новых композиционных материалов (дисперсионно-упрочненные и сверхтвердые материалы, металлокерамика, конструкционная керамика, модифицированные сплавы) с уникальными свойствами, либо улучшение характеристик уже известных, является одним из приоритетных направлений развития научно-технологического комплекса России. Технологические схемы получения композиционных материалов во всех случаях предполагают использование металлов, оксидов металлов или тугоплавких соединений типа карбидов, боридов, нитридов в виде порошков, причем дисперсный состав порошков оказывает существенное влияние на свойства получаемых материалов. Переход от порошков с характерными размерами частиц ~1–10 мкм, традиционно использующихся в композиционном материаловедении, к нанодисперсным порошкам с характерными размерами частиц 10–100 нм, позволяет добиться как существенного улучшения свойств существующих композиционных материалов, так и получения композиционных материалов с принципиально новыми свойствами, что обусловлено изменением физико-химических свойств порошков при достижении нанометрового размера частиц. При столь малых размерах, на поверхности частиц происходит перестройка расположения атомов и изменение типа межатомных связей. Строго пространственная периодичность расположения атомов, характерная для монокристаллов, нарушается. Межатомное расстояние закономерно изменяется при переходе от центра частички к ее поверхности. Существенно возрастает удельная площадь поверхности и химическая активность порошков, что имеет принципиальное значение для создания новых композиционных материалов. Поэтому, нанодисперсные порошки металлов, их оксидов, карбидов, нитридов и боридов находят все большее применение в технологиях композиционного материаловедения, что обуславливает актуальность проведения исследований процессов образования и роста наночастиц, изучения их физико–химических свойств, c целью разработки новых высокоэффективных методов синтеза нанодисперсных порошков в промышленных масштабах.
Задача получения нанопорошков веществ и их соединений решается в мировой практике самыми разнообразными способами. Одним из наиболее распространённых способов является газофазный синтез.
Синтез, газофазный с конденсацией паров иначе метод испарения и конденсации (англ. gas-phase synthesis with vapour condensation или evaporation-condensation method) — метод получения нанопорошков металлов, сплавов или соединений путем конденсации их паров при контролируемой температуре в атмосфере инертного газа низкого давления.
В отличие от испарения в вакууме, атомы вещества, испаренного в разреженной инертной атмосфере, быстрее теряют кинетическую энергию из-за столкновений с атомами газа и образуют кластеры. Металл испаряется из тигля или вводится в зону нагрева и испарения в виде проволоки, впрыскиваемого металлического порошка или в струе жидкости. Используется также распыление металла пучком ионов аргона. Подвод энергии осуществляется непосредственным нагревом, пропусканием электрического тока через проволоку, электродуговым разрядом в плазме, индукционным нагревом токами высокой и сверхвысокой частоты, лазерным излучением, электронно-лучевым нагревом.
Конденсация парогазовой смеси с температурой до 5000–1000К может происходить при ее поступлении в камеру с большим сечением и объемом, заполненную холодным инертным газом; в этом случае охлаждение происходит за счет расширения газовой смеси и благодаря контакту с холодной инертной атмосферой. Существуют установки, в которых в камеру конденсации коаксиально поступают две струи: парогазовая смесь подается вдоль оси, а по ее периферии поступает кольцевая струя холодного инертного газа. В результате турбулентного смешения, температура паров металла понижается, увеличивается пересыщение, и происходит быстрая конденсация.
Благоприятные условия конденсации металлических паров создаются при адиабатическом расширении в сопле Лаваля, когда в результате быстрого расширения создается высокий градиент температуры, и конденсация пара происходит почти мгновенно.
Самостоятельной задачей является собирание полученного конденсацией нанопорошка, так как его частицы настолько малы, что находятся в постоянном броуновском движении и остаются взвешенными в движущемся газе, не осаждаясь под действием силы тяжести. Для сбора получаемых порошков используют специальные фильтры и центробежное осаждение; в некоторых случаях применяется улавливание жидкой пленкой.
Основные закономерности образования наночастиц методом испарения и конденсации следующие.
Образование наночастиц происходит при охлаждении пара в зоне конденсации, которая тем больше, чем меньше давление газа. Внутренняя граница зоны конденсации находится вблизи испарителя, а ее внешняя граница по мере уменьшения давления газа может выйти за пределы реакционного сосуда. В процессе конденсации существенную роль играют конвективные потоки газа.
При увеличении давления газа до нескольких сотен паскаль средний размер частиц сначала быстро увеличивается, а затем медленно приближается к предельному значению в области давлений более 2,5 кПа.
П
ри одинаковом давлении газа переход от гелия к ксенону, т. е. от менее плотного инертного газа к более плотному, сопровождается ростом размера частиц в несколько раз.
При одинаковых условиях испарения и конденсации металлы с более высокой температурой плавления образуют частицы меньшего размера. Регулируя состав газовой фазы, содержащей, помимо инертного газа, два элемента и более, можно выращивать разные по форме малые частицы соединений различной степени кристалличности.
Схема получения нанопорошков из металла методом газофазного синтеза изображена на рисунке 3.
§ 1.3. Получение нанодисперсных веществ
методами термического разложения и восстановления
В процессах термического разложения обычно используют сложные металлорганические соединения, гидроксиды, карбонилы, формиаты, нитраты, оксалаты, амиды и амиды металлов, которые при определенной температуре распадаются с образованием синтезируемого вещества и выделением газовой фазы.
Например, пиролизом формиатов железа, кобальта, никеля, меди в вакууме или инертном газе при температуре 470 – 530К получают дисперсные порошки металлов со средним размером частиц 100 – 300 нм. Нанокристаллический порошок нитрида алюминия (AlN) со средним размером частиц 8 нм получали разложением в аммиаке при 900К полиамида алюминия. Бориды переходных металлов можно получать пиролизом борогидридов при 600 – 700К, то есть при температуре, которая гораздо ниже обычных температур твердофазного синтеза.
В общем виде основную реакцию пиролиза формиатов можно представить в виде следующего результирующего уравнения:
(
HCOO)n Me MeO + H2 + CO + H2O + Me
При этом реакция восстановления оксидов металлов газами CO и H2, выделяющимися при пиролизе, рассматривается как вторичная. По той же схеме происходит разложение формиатов Cu и Zn и других металлов.
Следует отметить, что при пиролизе формиатов Cu и Ni преобладает выход свободного металла, а при пиролизе формиатов Mn и Fe – выход оксидов металлов. Другие формиаты металлов могут занимать промежуточное положение; например, пи пиролизе формиата кобальта образуются 50-60 % CoO и 50-40 % Co/
Исследования показали, что температура разложения формиатов повышается в ряду Fe Ni Co Cu, а скорость реакции разложения возрастает в обратном порядке.
Термическое разложение оксалатов многих металлов (Mn, Fe, Cu) протекает по уравнению
M
eC2 O4 MeO + Co + CO2
Пиролиз оксалатов, формиатов и других солей позволяет получать порошки с размером частиц около 100 нм.
Путем термической диссоциации карбонилов при температуре до 773 К по реакции возможно получение полиметаллических пленок с размерами кристаллитов порядка 20 нм.
M
en (CO)m nMe + mCO
Характерной особенностью термического разложения является сравнительно невысокая селективность процесса, поскольку продукт реакции обычно представляет собой смесь целевого продукта и других соединений.
Метод восстановления используют для получения наноматериалов (чаще всего металлов) из исходных кислородосодержащих соединений. При переработке оксидов металлов в качестве восстановителей используют газы – водород, монооксид углерода, конвертированный природный газ. Этим процессам соответствуют реакции в результате которых получают нанопорошки металлов: Fe, W, Ni, Mo, Cu, Co.
M
eO + H2 Me + H2O (пар),
M
eO + CO Me + CO2,
Распространенным методом получения высокодисперсных металлических порошков является восстановление соединений металлов (гидрооксидов, хлоридов, нитратов, карбонатов) в токе водорода при температуре менее 500 К. достоинствами этого метода являются низкое содержание примесей и узкое распределение частиц порошка по размерам.
§ 1.4. Механический синтез, детонационный синтез, электрический взрыв проводников как способы получения наноматериалов
Детонационный синтез
Данным методом наночастицы получают в плазме, образованной в процессе взрыва бризантных взрывчатых веществ (ВВ) во взрывной камере (детонационной трубе).
В зависимости от мощности и типа взрывного устройства ударно-волновое взаимодействие на материал осуществляется за очень короткий промежуток времени (десятые доли микросекунд) при температуре более 3000 К и давлении в несколько десятков гектопаскалей. При таких условиях возможен фазовый переход в веществах с образованием упорядоченных диссипативных наноразмерных структур.
Ударно-волновой метод наиболее эффективен для материалов, синтез которых осуществляется при высоких давлениях, например, порошков алмаза, кубического нитрата бора и других.
При взрывном превращении конденсированных ВВ с отрицательным кислородным балансом (смесь тротила и гексогена) в продуктах реакции присутствует углерод, из которого и образуется алмазная дисперсная фаза с размером частиц порядка 4-5 нм.
Подвергая ударно-волновому воздействию от заряда ВВ пористые структуры различных металлов и их солей, гели гидрооксидов металлов, можно получать нанопорошки оксидов Al, Mg, Ti, Zn, Si и другие.
Достоинством метода ударно-волнового синтеза является возможность получения нанопорошков различных соединений не только обычных фаз, но и фаз высокого давления. Вместе с тем практическое применение способа требует специальных помещений и технологического оборудования для проведения взрывных работ.
Механохимический синтез
При этом способе обеспечивают механическую обработку твердых тел, в результате которой происходят измельчение и пластическая деформация веществ. Измельчение материалов сопровождается разрывом химических связей, что предопределяет возможность последующего образования новых химических связей, то есть протекание механохимических реакций.
Механическое воздействие при измельчении материалов является импульсным; при этом возникновение поля напряжений и его последующая релаксация происходят не в течение всего времени пребывания частиц в реакторе, а только в момент соударения частиц и в короткое время после него.
Механическое воздействие бывает не только импульсивным, но и локальным, так как происходит не во всей массе твердого вещества, а лишь там, где возникает и затем релаксирует поле напряжений.
Воздействие энергии, выделяющей при высокой степени неравновесности во время удара или истирания, из-за низкой теплопроводности твердых тел приводит к тому, что какая-то часть вещества находится в виде ионов и электронов – в состоянии плазмы. Механохимические процессы в твердом теле можно объяснить с использованием фононной теории разрушения хрупких тел (фонон – квант энергии упругих колебаний кристаллической решетки).
Механическое измельчение твердых материалов осуществляют в мельницах сверхтонкого измельчения (шаровых, планетарных, вибрационных, струйных). При взаимодействии рабочих органов с измельчаемым материалом возможен его локальный кратковременный разогрев до высоких (плазменных) температур, получение которых в обычных условиях осуществляется при высоких температурах.
Механическим способом можно получать нанопорошки с размером частиц от 200 до 5-10 нм. Так, при помоле смеси металла и углерода в течении 48 часов были получены частицы TiC, ZrC, VC и NbC с размером 7-10 нм. В шаровой мельнице из смеси порошков вольфрама углерода и кобальта с исходным размером частиц около 75 мкм за 100 часов были получены частицы нанокомпозита WC-Co с размером частиц 11-12 нм.
Электрический взрыв проводников (ЭВП)
Для производства нанопорошков в настоящее время используется метод электрического взрыва проводников (ЭВП). Особый интерес ЭВП представляет как метод получения порошков металлов с высокой химической активностью. По данным ряда исследователей, вследствие экстремальных условий образования электровзрывных наночастиц (высокие температуры и скорость процесса) при ЭВП возможно формирование неравновесной структуры дисперсной фазы.
Характерными особенностями нанопорошков, получаемых ЭВП - технологией, являются:
сравнительно небольшой, по сравнению с другими физическими методами, разброс частиц по размерам;
относительная стабильность свойств нанопорошков в нормальных условиях и высокая активность в различных химических процессах;
низкие температуры спекания наночастиц.
Применение нанопорошков, полученных ЭВП - технологией открывает для учёных, инженеров и технологов широчайшие возможности в области создания новейших материалов и технологий, принципиально новых приборов и устройств.
По мнению экспертов, применение нанопорошков позволит существенно улучшить параметры существующих технологических процессов и создать новые технологии. Используя нанопорошки, например как добавки, можно значительно улучшить качество многих продуктов — лекарств, смазочных материалов, топлив, полимеров, фильтров, геттеров, присадок к смазочным материалам, красящих и магнитных пигментов, компонентов низкотемпературных высокопрочных припоев и др.
П

ример установки для получения нанопорошков методом ЭВП изображён на рисунке:
Элементы установки собраны в два блока: генератор импульсов электрической энергии и модуль по производству нанопорошка.
Работа установки происходит следующим образом: от высоковольтного источника питания -
1 заряжается ёмкостной накопитель энергии -
2. Механизм подачи проволоки -
3 обеспечивает автоматическую установку взрываемого отрезка проволоки -
4 между двумя электродами. Как только отрезок проволоки займет заданное положение, включается коммутатор -
5, происходит разряд накопителя на этот отрезок проволоки, и он взрывается. Образовавшийся порошок собирается в накопителе -
6, пассивируется и поступает на дальнейшую переработку. Объем камеры -
7 вакуумируется, а затем заполняется газовой атмосферой. Эти функции выполняет система газового снабжения -
8.
В качестве газовой атмосферы используются инертные газы, преимущественно аргон. В некоторых случаях предпочтительнее применение водорода, азота или смеси газов, например, аргон + кислород.
Параметры установки:
Через отрезок металлической проволоки (фольги) пропускается импульс тока, под действием которого проволока разрушается на мельчайшие частички и пар. Разлетаясь с большой скоростью, продукты разрушения быстро охлаждаются и образуется высокодисперсный порошок.
В зависимости от рода газа, окружающего разрушаемую проволоку, можно получать порошки металлов, сплавов, порошки химических соединений или порошки композиционных составов. При этом, композиционными являются отдельные частицы. Дисперсность порошка, структура частиц и другие свойства определяются параметрами разрядного контура, материалом и геометрическими размерами проволоки (фольги) и характеристиками газовой среды, в которой производится взрыв. Технологический процесс осуществляется в замкнутом объеме, без использования вредных химических веществ и при очень малом расходе инертных газов. Причем расход газов, в основном, связан не с производством порошка, а с его транспортировкой, упаковкой и другими последующими операциями.